


Fig. 1 A Streaked Tenrec (Hemicentetes semispinosus), Family 
Tenrecidae, from Ranomafana, Madagascar. Credit: M. Vences.
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Press, 2009).

morphological characters alone. Here, the molecular and 
morphological data that form the basis of our current 
understanding of the relationships and the divergence 
times of Afrosoricida will be reviewed, with emphasis on 
the time of divergence of the two families.

Tenrecs and golden moles were originally placed 
within the Order Lipotyphla (= Insectivora sensu stricto), 
which was a taxonomic group based on ancestral mor-
phological characters (5). 7 ey were associated with 
moles (Talpidae), shrews (Soricidae), and Solenodon in 
the Suborder Soricomorpha by Butler (6), who even pro-
posed a common origin of chrysochlorids and tenrecids 
based on very few derived characters such as the basi-
sphenoid bulla (also present in erinaceids), zalambdodont 
molars (also in Solenodon), and the orthomesometrial 
implantation of the blastocyst. Furthermore, Butler sug-
gested that the high number of morphological diB erences 
between chrysochlorids and tenrecids was an indication 
of their early divergence. On the other hand, MacPhee 
and Novacek (7) proposed that Chrysochloridae should 
be elevated to the same subordinal rank as Soricomorpha 
because, in their opinion, they did not share any derived 
traits.

7 e Order Lipotyphla has been completely reorganized 
with the advent of molecular phylogenies. It is divided 
into two widely divergent clades, the Eulipotyphla as a 
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Abstract

Afrosoricida is an order represented by two families (54 
species) of largely insectivorous mammals, Tenrecidae (ten-
recs) and Chrysochloridae (golden moles), distributed in 
sub-Saharan Africa and Madagascar. Most morphological 
studies have not supported the joining of these two families 
in a natural group, yet it has been supported in all molecu-
lar phylogenies. Molecular studies also have shown that 
Afrosoricida is a member of the Superorder Afrotheria and 
not related to other insectivorous mammals in the Order 
Eulipotyphla. Several studies have addressed the timeline 
of afrosoricid evolution, suggesting that tenrecids diverged 
from chrysochlorids 67–63 million years ago (Ma).

7 e mammalian Order Afrosoricida is composed of 
two families, the tenrecs (Tenrecidae; Fig. 1) and golden 
moles (Chrysochloridae) (1). 7 e name Afrosoricida, 
coined by Stanhope et al. (1), has been debated (2), but 
is now broadly accepted and used in the literature. 7 e 
order includes 10 genera and 33 species of tenrecs and 
nine genera and 21 species of chrysochlorids. Among the 
tenrecs, the most species-rich genus is Microgale, which 
accounts for two-thirds of the overall tenrec diversity 
and for which new species are still being discovered (3).

7 e distribution of afrosoricids is restricted to sub-
Saharan Africa and Madagascar. All golden moles are 
blind subterranean species, of which the greatest diver-
sity has been recorded in Southern Africa (2). In con-
trast, only one of the tenrec subfamilies is present on 
the African mainland. All other tenrec subfamilies are 
endemic to Madagascar. Tenrecs display a high level 
of adaptation to their environment and are remark-
able examples of convergent morphological evolution 
with other insectivores, notably shrews, hedgehogs, and 
moles (4). 7 is makes it di1  cult to understand their ori-
gin and phylogenetic interrelationships on the basis of 
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Fig. 2 A timetree of tenrecs and golden moles (Afrosoricida). Divergence times are from Table 1.
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closely resembles that of extant species. 7 is observation 
has been used to suggest that the origin of this family 
may be much older than the known fossil record (25), 
a hypothesis that appears to agree with recent molecu-
lar age estimates (24). 7 e main debate about the evolu-
tionary history of Afrosoricida concerns the timing of 
the colonization(s) of Madagascar by tenrecs (21, 23, 28), 
which happened aJ er Madagascar became completely 
isolated from the mainland. To date, the only known ten-
rec fossils have been discovered on the African continent 
but are considered to represent lineages nested within 
the Malagasy tenrec subfamilies (28). If true, this might 
aB ect the inferred number of migrations of the Tenrecidae 
between the African continent and Madagascar, but not 
the age of the main Malagasy/African tenrec divergence 
that appears to be much older than the age of the fossils 
(22, 23).
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Table 1. Divergence times (Ma) and their confi dence/credibility intervals (CI) among tenrecs and 
golden moles (Afrosoricida).

Timetree Estimates

Node Time Ref. (19) Ref. (20) Ref. (22) Ref. (23)

  Time CI Time CI Time CI Time CI

1 65.4 66.4 72–60 65.4 74–57 63.0 72–53 66.9 76–58

Note: Node times in the timetree represent the mean of time estimates from different studies. All studies have 
overlapping data sets. The genes analyzed were: 19 nuclear and three mitochondrial genes among which VWF, 
ADRA2B, BRCA1, and 12s–16s rRNA (19); 16 nuclear and three mitochondrial genes including VWF, ADRA2B, BRCA1, 
and 12s–16s rRNA (20); VWF, ADRA2B, and BRCA1 (22); and VWF, ADRA2B, and AR (23).
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